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Abstract This article is devoted to the study of some extremality and optimality notions
that are different from conventional concepts of optimal solutions to optimization-related
problems. These notions reflect certain amounts of linear subextremality for set systems and
linear suboptimality for feasible solutions to multiobjective and scalar optimization problems.
In contrast to standard notions of optimality, it is possible to derive necessary and sufficient
conditions for linear subextremality and suboptimality in general nonconvex settings, which
is done in this article via robust generalized differential constructions of variational analysis
in finite-dimensional and infinite-dimensional spaces.
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1 Introduction

It has been well recognized that, excepts convex programming and related problems with
a convex structure, necessary conditions are usually not sufficient for conventional notions
of optimality. Observe also that major necessary optimality conditions in all the branches of
the classical and modern optimization theory (e.g., Lagrange multipliers and Karush–Kuhn–
Tucker conditions in non-linear programming, the Euler–Lagrange equation in the calculus
of variations, the Pontryagin maximum principle in optimal control, etc.) are expressed in
dual forms involving adjoint variables. At the same time, the very notions of optimality, in
both scalar and vector frameworks, are formulated of course in primal terms.

A challenging question is to find certain modified notions of local optimality so that first-
order necessary conditions known for the previously recognized notions become necessary
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and sufficient in the new framework. Such a study has been started by Kruger (see [7,8] and
the references therein), where the corresponding notions are called “weak stationarity.” It
seems that the main difference between the conventional notions and those studied in [7,8]
and in this article is that the latter relate to a certain (sub)optimality not at the point in question
but in a neighborhood of it, and that they involve a linear rate in the sense precisely defined
below. To some extent, this is similar to the linear rate in Lipschitz continuity (in contrast
merely to continuity) as well as in modern concepts of metric regularity and linear openness,
which distinguishes them from the classical regularity and openness notions of non-linear
analysis. On this basis we suggested in [13] to use the names “linear subextremality” for set
systems and “linear suboptimality” for the corresponding notions in optimization problems.

As has been fully recognized just in the framework of modern variational analysis (even
regarding the classical settings), the linear rate nature of the fundamental properties involv-
ing Lipschitz continuity, metric regularity, and openness for single-valued and set-valued
mappings is the key issue allowing us to derive complete characterizations of these prop-
erties via appropriate tools of generalized differentiation; see the books [12,17] and their
references. Precisely the same linear rate essence of the (sub)extremality and (sub)optimality
concepts studied in this article is the driving force ensuring the possibility to justify the valid-
ity of known necessary extremality and optimality conditions for the conventional notions
as necessary and sufficient conditions for the new notions under consideration.

In contrast to [7,8], where dual criteria for “weak stationarity” are obtained in “fuzzy”
forms involving Fréchet-like constructions at points nearby the reference ones, in this paper
(cf. also [13, Chapt. 5]) we pay the main attention to pointwise conditions expressed via
the basic robust generalized differential constructions of [12,13] exactly at the points in
question. Besides the latter being more convenient for applications, we can significantly
gain from such pointwise characterizations due to the well-developed (full) calculus enjoyed
by the robust constructions, which particularly allows us to cover problems with various
constrained structures important for both the optimization theory and its applications.

Observe that, from the viewpoint of deriving necessary and sufficient conditions for linear
suboptimality, we need calculus rules of not merely the (right) inclusion type as required by
the majority of applications, but largely of the equality type, which are available as well
[12] for our basic generalized differential constructions way beyond convexity. Furthermore,
in infinite-dimensional spaces one also needs calculus of the so-called sequential normal
compactness (SNC) properties (automatic in finite dimensions), which is strongly developed
in the book [12]. Based on these calculi, we obtain characterizations and verifiable neces-
sary conditions for linear suboptimality in various classes of structured optimization-related
problems, including those known as mathematical programs with equilibrium constraints
(MPECs) and equilibrium problems with equilibrium constraints (EPECs).

The rest of the article is organized as follows. In Sect. 2 we present preliminaries from
variational analysis and generalized differentiation widely used in this work. Section 3 deals
with geometric aspects of linear suboptimality concerning linear subextremality (or subex-
tremality at a linear rate) for systems of sets. We show that the relations of the exact extremal
principle [12] are necessary for linear subextremality under general assumptions in Asplund
spaces being also sufficient for this property in finite dimensions.

Section 4 is devoted to the study of linear suboptimality in general problems of constrained
multiobjective optimization. We derive pointwise necessary as well as necessary and suffi-
cient conditions for linear suboptimality in both finite and infinite dimensions. The results are
specified for problems with operator and functional constraints and also applied to general
EPECs treated from the viewpoint of multiobjective optimization.
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The last Sect. 5 of the paper concerns the study of linear suboptimality in constrained min-
imization problems. We obtain pointwise necessary conditions and characterizing results for
the corresponding notion of linear subminimality and apply them to general MPECs and some
specifications particularly governed by variational inequalities and their generalizations.

Our notation is basically standard; cf. [12,17]. In particular, IB stands for the unit closed
ball of the space in question, while Br (x) signifies the ball centered at x with radius r > 0.
As usual, IN := {1, 2, . . .}. Given a set-valued mapping F : X →→ X∗ between a Banach
space X and its topological dual X∗, denote by

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences xk → x̄ and x∗

k
w∗→ x∗

with x∗
k ∈ F(xk) for all k ∈ IN

} (1)

the sequential Painlevé-Kuratowski upper/outer limit of F as x → x̄ with respect to the norm
topology of X and the weak∗ topology w∗ of X∗.

2 Preliminaries

We first recall the generalized differential constructions of variational analysis used in what
follows; see the book [12] with the references and discussions therein and also [3,13,17] for
some related and additional material.

Given a non-empty subset� of a Banach space X and a point x̄ ∈ �, the (basic, limiting)
normal cone to � at x̄ is

N (x̄;�) := Lim sup
x
�→x̄
ε↓0

N̂ε(x;�), (2)

where x
�→ x̄ means that x → x̄ with x ∈ �, and where

N̂ε(x;�) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

u
�→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

}
(3)

is the set of ε-normals to � at x ∈ �. When ε = 0 in (3), N̂ (x;�) := N̂0(x;�) is a convex
cone called the prenormal cone or the Fréchet normal cone to� at x . We can equivalently put
ε = 0 in (2) if � is locally closed around x̄ and the space X is Asplund, i.e., each separable
subspace of X has a separable dual. The latter class includes all spaces with a Fréchet dif-
ferentiable renorm, particularly every reflexive space. On the other hand, there are Asplund
spaces that fail to have even a Gâteaux differentiable renorm; see [5,12] for more details,
discussions, and references.

In contrast to (3), the normal cone (2) is often nonconvex enjoying nevertheless full cal-
culus in the framework of Asplund spaces, while a number of useful calculus results are also
available in arbitrary Banach spaces (see [12, Chapter 1–3]). This calculus is mainly based
on extremal/variational principles that replace convex separation theorems in nonconvex
settings. Accordingly, similar well-developed calculi hold true for the associated subdifferen-
tial and coderivative constructions concerning extended-real-valued functions and set-valued
mappings defined below.

A set � ⊂ X is normally regular at x̄ ∈ � if

N (x̄;�) = N̂ (x̄;�). (4)
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Besides convex sets, this property is satisfied in other important settings, particularly for sets
described by smooth equalities and inequalities under the Mangasarian-Fromovitz constraint
qualification. The reader can find more information about (4) and other notions of set reg-
ularity in [4,12,17] and the references therein. Note however that the normal regularity (4)
fails for sets homeomorphic to graphs of single-valued nonsmooth Lipschitzian mappings,
which is particularly the case of maximal monotone operators; see [12, Subsects. 1.2.2 and
3.2.4].

Considering next a set-valued mapping F : X →→ Y between Banach spaces and a point
(x̄, ȳ) ∈ gph F from its graph

gph F := {
(x, y) ∈ X × Y

∣∣ y ∈ F(x)
}
,

we define the normal coderivative D∗
N F(x̄, ȳ) : Y ∗ →→ X∗ of F at (x̄, ȳ) by

D∗
N F(x̄, ȳ)(y∗) := {

x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gph F

)}
. (5)

The mixed coderivative of F at (x̄, ȳ) is given by

D∗
M F(x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗

∣∣∣∃ εk ↓ 0, (xk, yk)
gph F→ (x̄, ȳ), x∗

k
w∗→ x∗,

‖y∗
k − y∗‖ → 0 with (x∗

k ,−y∗
k ) ∈ N̂εk

(
(xk, yk); gph F

)
as k ∈ IN

}
. (6)

By (2) for � = gph F ∈ X × Y , observe that the only difference between the normal and
mixed coderivatives is that the norm convergence y∗

k → y∗ is used in (6) instead of the

weak∗ one y∗
k
w∗→ y∗ in the equivalent representation of (5). Note that we can put εk ≡ 0 in

(6) and similarly in (5) if both spaces X and Y are Asplund while the graph of F is locally
closed around (x̄, ȳ). Clearly

D∗
M F(x̄, ȳ)(y∗) ⊂ D∗

N F(x̄, ȳ)(y∗) for all y∗ ∈ Y ∗, (7)

where the equality is obvious when Y is finite-dimensional. Generally, the case of equality
in (7) is postulated in [12] as strong coderivative normality of F at (x̄, ȳ). Some sufficient
conditions for this important property of set-valued and single-valued mappings are listed in
[12, Proposition 4.9]. They particularly include mappings that are N -regular at (x̄, ȳ) (i.e.,
those whose graphs are normally regular (4) at (x̄, ȳ); hence both convex-graph and strictly
differentiable ones), also the so-called “strictly Lipschitzian mappings,” etc.

Another type of the mixed coderivative is defined in [12], under the name of the reversed
mixed coderivative of F at (x̄, ȳ) ∈ gph F , by

D̃∗FM (x̄, ȳ)(y∗) := {
x∗ ∈ X∗∣∣ − y∗ ∈ D∗

M F−1(ȳ, x̄)(x∗)
}

(8)

via the mixed coderivative (6) of the inverse mapping F−1. It corresponds to the limiting

construction in (6) with the reversed convergence y∗
k
w∗→ y∗ and ‖x∗

k −x∗‖ → 0. The reversed
mixed coderivative (8) clearly reduces to the normal one (5) when dim X < ∞. Furthermore,
we have

D∗
N f (x̄)(y∗) = D∗

M f (x̄)(y∗) = D̃∗
M f (x̄)(y∗) = {∇ f (x̄)∗y∗} for all y∗ ∈ Y ∗ (9)

in any Banach spaces, provided that F := f : X → Y is single-valued and strictly differen-
tiable at x̄ (in particular, when it is continuously differentiable around this point).

Consider now an extended-real-valued function ϕ : X → IR := [−∞,∞] finite at x̄ and
the associated epigraphical multifunction Eϕ : X →→ IR given by

Eϕ(x) := {
µ ∈ IR

∣∣ µ ≥ ϕ(x)
}

with gph Eϕ = epiϕ.
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Then the basic subdifferential ∂ϕ(x̄) and the singular subdifferential ∂∞ϕ(x̄) of ϕ at x̄ can
be defined via the coderivative (5) of Eϕ (which agrees with (6) in this case) by, respectively,

∂ϕ(x̄) := D∗
N Eϕ(x̄, ϕ(x̄))(1) and ∂∞ϕ(x̄) := D∗

N Eϕ(x̄, ϕ(x̄))(0). (10)

If the space X is Asplund and if ϕ is lower semicontinuous (l.s.c.) around x̄ , then one has the
analytic representation of both constructions in (10) by

∂ϕ(x̄) = Lim sup
x
ϕ→x̄

∂̂ϕ(x), ∂∞ϕ(x̄) = Lim sup
x
ϕ→x̄
λ↓0

λ̂∂ϕ(x) (11)

via the so-called Fréchet subdifferential

∂̂ϕ(x̄) :=
{

x∗ ∈ X∗
∣∣∣ lim inf

x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}
,

which is also known as the subdifferential in the sense of viscosity solutions of ϕ at x̄ . The

symbol x
ϕ→ x̄ in (11) signifies that x → x̄ with ϕ(x) → ϕ(x̄). Recall that ϕ : X → IR is

lower regular at x̄ if

∂ϕ(x̄) = ∂̂ϕ(x̄),

which is the case of many important classes of functions (besides convex and smooth ones)
encountered in optimization and variational analysis; see [12,17] for more details.

Finally in this section, recall certain normal compactness properties used in what follows.
These properties automatically hold in finite dimensions being among the most essential
ingredients of infinite-dimensional variational analysis and generalized differentiation. They
are unavoidably present in calculus rules for robust generalized differential constructions
discussed above and in the corresponding optimality conditions. It is important to empha-
size that a well-developed full calculus is available for such properties (mostly in Asplund
while also in Banach spaces), in the sense that they are known to be preserved while various
operations are performed on sets, set-valued mappings, and extended-real-valued functions
under natural qualification conditions; see [12] for more details.

Given a set� ⊂ X , we say that it is sequentially normally compact (SNC) at x̄ ∈ � if for

any sequences εk ↓ 0, xk
�→ x̄ , and x∗

k
w∗→ 0 one has

‖x∗
k ‖ → 0 provided that x∗

k ∈ N̂εk (xk;�) as k → ∞,

where εk can be equivalently omitted (εk ≡ 0) when X is Asplund and � is locally closed
around x̄ . It is automatic when� is compactly epi-Lipschitzian (CEL) around x̄ in the sense of
Borwein and Strójwas [2], while in general the SNC requirement may be essentially weaker
than the CEL one; see [6] for various examples in Banach and Asplund spaces.

Accordingly, a set-valued mapping F : X →→ Y is SNC at (x̄, ȳ) ∈ gph F if its graph
is SNC at this point. For mappings, a less restrictive property is important for applications.
Namely, F : X →→ Y is partially SNC (PSNC) at (x̄, ȳ) ∈ gph F if ‖x∗

k ‖ → 0 whenever

x∗
k ∈ N̂εk

(
(xk, yk); gph F), (xk, yk)

gph F→ (x̄, ȳ), x∗
k
w∗→ 0, and ‖y∗

k ‖ → 0,

with εk ≡ 0 for closed-graph mappings between Asplund spaces. We mention that F is
automatically PSNC at (x̄, ȳ) if it has Aubin’s Lipschitz-like (“pseudo-Lipschitzian” [1])
property around this point.
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3 Linear subextremality via the exact extremal principle

Following the geometric approach to variational analysis and generalized differentiation
[12,13], we start with extremal properties of sets and then proceed with solutions to con-
strained optimization problems. Given two subsets �1 and �2 of a normed space X , recall
[9] that x̄ ∈ �1 ∩ �2 is a local extremal point of the set system {�1,�2} if there exists a
neighborhood U of x̄ such that for any ε > 0 there is a ∈ ε IB with

(�1 + a) ∩�2 ∩ U = ∅.
Loosely speaking, the local extremality of sets at a common point means that they can be
locally “pushed apart” by a small perturbation (translation) of one of them.

It is clear that every boundary point x̄ of a closed set � is a local extremal point of the
pair

{
�, {x̄}}. In general, this geometric concept of extremality covers conventional notions

of optimal solutions to various problems of scalar and vector/multiobjective optimization,
equilibria, etc. To illustrate it, let us consider a local optimal solution x̄ to the following
problem of constrained optimization:

minimize ϕ(x) subject to x ∈ � ⊂ X.

Then one can easily check that (x̄, ϕ(x̄)) is a local extremal point of the set system {�1,�2}
in X × IR with �1 = epiϕ and �2 = � × {ϕ(x̄)}. More examples of extremal systems of
sets related and also not related to optimization can be found in [12,13],

It is not hard to observe that x̄ ∈ �1 ∩ �2 is a local extremal point of the set system
{�1,�2} if and only if

ϑ
(
�1 ∩ Br (x̄),�2 ∩ Br (x̄)

) = 0 for some r > 0, (12)

where the measure of overlapping ϑ(�1,�2) for the sets �1, �2 is defined by

ϑ(�1,�2) := sup
{
ν ≥ 0

∣∣ ν IB ⊂ �1 −�2
}

Modifying the constant ϑ(·, ·) in (12), Kruger introduced (under the name of “extended
extremality” in [7] and “weak stationarity” in [8]) the new notion of extremality for set
systems that in fact reflects a certain amount of linear subextremality; see Sect. 1 and the
discussion below.

Definition 1 (linear subextremality of sets) Given �1,�2 ⊂ X and x̄ ∈ �1 ∩ �2, we say
that the set system {�1,�2} is linearly subextremal around the point x̄ if

ϑlin(�1,�2, x̄) := lim inf
xi
�i→x̄

r↓0

ϑ
([�1 − x1] ∩ r IB, [�2 − x2] ∩ r IB

)

r
= 0 (13)

with i = 1, 2 under the lim inf sign in (13).

It is clear that the set extremality in the sense of (12) implies the linear subextremality in the
sense of (13), but not vice versa. Let us discuss some specific features of linear subextremality
for set systems that distinguish this notion from the concept of (12).

(a) The constant ϑlin(�1,�2, x̄) defined in (13), in contrast to the one from (12), involves
a linear rate of set perturbations as r ↓ 0. Therefore, condition (13) describes a local
non-overlapping at linear rate for the sets�1 and�2, while condition (12) corresponds
to a local non-overlapping of these sets with an arbitrary rate as r ↓ 0,
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(b) Condition (13) requires not the precise local non-overlapping of the given sets but up to
their infinitesimally small deformations.

(c) Condition (13) does not require that the sets�1 and�2 non-overlap exactly at the point
x̄ . Moreover, it is easy to observe from the relations in (b) that (13) holds if, given any
neighborhood U of x̄ , there are points x1 ∈ �1 ∩ U and x2 ∈ �2 ∩ U ensuring an
approximate non-overlapping of the translated sets �1 − x1 and �2 − x2 with a linear
rate.

One of the most important results in the geometric theory of variational analysis and its
applications is the so-called extremal principle providing necessary conditions for local ex-
tremal points of closed set systems. Its first versions were formulated in [9], while the most
advanced result on the exact (pointbased) extremal principle is given in [12, Theorem 2.22]:

Let x̄ ∈ �1 ∩�2 be a local extremal point of the set system {�1,�2}, where �1 and �2

are locally closed subsets of an Asplund space X. Assume that either �1 or �2 is SNC at x̄ .
Then there is x∗ ∈ X∗ satisfying

x∗ ∈ N (x̄;�1) ∩ (−N (x̄;�2)), ‖x∗‖ = 1. (14)

The following theorem shows that the above conditions of the extremal principle are nec-
essary not only for local extremal points of {�1,�2} but also for a weaker (less restrictive)
notion of linear subextremality, providing actually a characterization of Asplund spaces.
Moreover, these conditions happen to be necessary and sufficient for linear subextremality
in finite-dimensional spaces.

Theorem 1 (linear subextremality via the extremal principle) Let �1 and �2 be nonempty
subsets of a Banach space X, and let x̄ ∈ �1 ∩�2. Assume that both�1 and�2 are locally
closed around x̄ and that one of them is sequentially normally compact at this point. The
following assertions hold:

(i) If X is Asplund and if the system {�1,�2} is linearly subextremal around x̄, then there
is x∗ ∈ X∗ satisfying the relationships of the extremal principle (14).

(ii) Furthermore, if relationships (14) are satisfied for every set system {�1,�2} linearly
subextremal around x̄, then the space X is Asplund.

(iii) Let dim X < ∞. Then the system {�1,�2} is linearly subextremal around x̄ if and only
if the relationships of the extremal principle (14) are satisfied.

Proof To justify (i), consider arbitrary subsets �1 and �2 of an Asplund space X that are
locally closed around x̄ and form a linearly subextremal system around this point. Let ε > 0.
As observed in [7], a slight modification of the proof of the corresponding (approximate)
necessary conditions for local extremal points (12) leads us in fact to the following result
concerning linear subextremality (cf. [12, Subsect. 2.2.3] and [13, Subsect. 5.4.1] for more
details and discussions): there are xi ∈ �i ∩ (x̄ + ε IB) and x∗

i ∈ N̂ (xi ;�i ), i = 1, 2,
satisfying the relationships

‖x∗
1 + x∗

2‖ ≤ ε and ‖x∗
1‖ + ‖x∗

2‖ = 1.

Now picking εk ↓ 0 as k → ∞ and using the latter result, we find sequences xik → x̄
with xik ∈ � and x∗

ik ∈ N̂ (xik;�i ) as i = 1, 2 such that

‖x∗
1k + x∗

2k‖ ≤ εk and ‖x∗
1k‖ + ‖x∗

2k‖ = 1 whenever k ∈ IN . (15)

Since bounded subsets in duals to Asplund spaces are weak∗ sequentially compact [5], there
are subsequences of {x∗

1k} and {x∗
2k}, which weak∗ converge to some x∗

1 ∈ X∗ and x∗
2 ∈ X∗,
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respectively. Passing to the limit as k → ∞ in the first relationship of (15) and taking into
account the well-known lower semicontinuity of the normal function ‖ · ‖ in the weak∗
topology of X∗, we conclude that x∗

1 = −x∗
2 =: x∗. Furthermore,

x∗ ∈ N (x̄;�1) ∩ (−N (x̄;�2))

by definition (2) of the basic normal cone. To prove assertion (i) of the theorem, it remains
to show that x∗ �= 0 if one of the sets �i (say �1 for definiteness) is SNC at x̄ .

By the contrary, assume that x∗ = 0. Then x∗
1k

w∗→ 0 and hence ‖x∗
1k‖ → 0 as k → ∞ by

the SNC property of�1 at x̄ . Employing the first relationship in (15), we get that ‖x∗
2k‖ → 0

as well. This obviously contradicts the second (non-triviality) relationship in (15) for large
k ∈ IN and thus completes the proof of assertion (i) of the theorem.

Assertion (ii) follows directly from Theorem 2.22(ii) in [12], which justifies the Aspl-
und property of X provided that (14) holds for every local extremal point x̄ of an arbitrary
set system {�1,�2} that are locally closed around x̄ and one of which is SNC at x̄ . As
observed above, the local extremality of {�1,�2} at x̄ in the sense of (12) implies the linear
subextremality of {�1,�2} around this point in the sense of Definition 1.

Let us finally justify assertion (iii). Due to the above conclusion of (i) and the automatic
fulfillment of the SNC property in finite dimensions, it remains to show that the relationships
(14) of the (exact) extremal principle imply the linear subextremality of {�1,�2} around x̄
provided that dim X < ∞. To proceed, we take x̄ ∈ �1 ∩�2 satisfying (14) and, using the
construction (2) in finite dimensions, find sequences xik → x̄ , x∗

1k → x∗, and x∗
2k → −x∗

as k → ∞ such that

xik ∈ �i and x∗
ik ∈ N̂ (xik;�i ) for i = 1, 2, k ∈ IN .

Since ‖x∗
1k‖ + ‖x∗

2k‖ → 2‖x∗‖ = 2 as k → ∞, we get by the standard normalization
procedure that for every ε > 0 there are

xi ∈ �i ∩ (x̄ + ε IB) and x∗
i ∈ N̂ (xi ;�i ) as i = 1, 2

with ‖x∗
1 + x∗

2‖ ≤ ε and ‖x∗
1‖ + ‖x∗

2‖ = 1.

Employing now [7, Theorem 4.1], we conclude that the set system {�1,�2} is linearly subex-
tremal around x̄ and thus complete the proof of the theorem. ��

Note that the above proof of assertion (iii) of Theorem 1 in the general geometric setting
essentially employs the finite dimensionality of the space X ensuring that the weak∗ topology
of X∗ agrees with the norm one. By the fundamental Josefson-Nissenzweig theorem, this
never holds in a Banach space of infinite dimension. Nevertheless, the latter finite dimension-
ality assumption can be essentially relaxed (partially dropped) for sets �i of certain special
functional structures considered in the next sections.

4 Linear suboptimality in multiobjective problems and EPECs

The main attention in this section is paid to the notion of linearly suboptimal solutions to
problems of constrained multiobjective optimization. This non-conventional notion of sub-
optimality is actually induced, in the functional framework, by the geometric concept of
linear subextremality for set systems studied in Sect. 3.
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Given a mapping f : X → Z between Banach spaces, subsets � ⊂ X and � ⊂ Z , and a
point x̄ ∈ �, we consider following [7] the constant

ϑlin( f,�,�, x̄) := lim inf
x
�→x̄, z

�→ f (x)
r↓0

ϑ
(

f (Br (x) ∩�)− f (x),�− z
)

r
, (16)

and introduce the notion of linear suboptimality as in [13], which was originally defined as
“( f,�,�)-extremality” in [7] and as “weak stationarity” in [8].

Definition 2 (linearly suboptimal solutions to multiobjective problems) Given ( f,�,�, x̄)
as above, we say that the point x̄ ∈ � is linearly suboptimal with respect to ( f,�,�) if
one has

ϑlin( f,�,�, x̄) = 0.

It is easy to check that the point x̄ ∈ � is linearly suboptimal in the sense of Definition 2
if it is (locally) ( f,�,�)-optimal in the following sense: there is a neighborhood U of x̄ and
a sequence {zk} ⊂ Z with ‖zk‖ → 0 as k → ∞ such that

f (x)− f (x̄) /∈ �− zk for all x ∈ � ∩ U and k ∈ IN ,

where we may always put f (x̄) = 0 for simplicity and assume that 0 ∈ �. The latter notion
is induced by the concept of local extremal points for set systems, discussed in the beginning
of Sect. 3, and cover various concepts of optimality in multiobjective optimization; see [13,
Subsect. 5.3.1] for more details, examples, and discussions.

In what follows, we derive pointwise/pointbased necessary and sufficient conditions for
linear ( f,�,�)-suboptimality expressed in terms of our basic/limiting normal and coderiv-
ative constructions defined in Sect. 2.

Let us start with the so-called “condensed” conditions expressed via coderivatives of the
set-valued mapping

F(x) :=
{

f (x)−� if x ∈ �,
∅ otherwise.

(17)

built upon the initial data of (16).

Theorem 2 (condensed necessary and sufficient conditions for linear suboptimality in mul-
tiobjective problems) Let F be a mapping between Banach spaces defined in (17). The
following assertions hold:

(i) Assume that dim X < ∞ and that there is 0 �= z∗ ∈ Z∗ satisfying

0 ∈ D∗
M F(x̄, 0)(z∗).

Then x̄ is linearly suboptimal with respect to ( f,�,�).
(ii) Conversely, assume that x̄ is linearly suboptimal with respect to ( f,�,�). Then there

is 0 �= z∗ ∈ Z∗ satisfying

0 ∈ D̃∗
M F(x̄, 0)(z∗)

provided that both X and Z are Asplund, that gph F is locally closed around (x̄, 0),
and that F−1 is PSNC at (0, x̄); the latter is automatic when dim Z < ∞.
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(iii) Let dim X < ∞, let Z be Asplund, and let F be closed-graph around (x̄, 0). Assume
also that F is SNC and strongly coderivatively normal at (x̄, 0) with

D∗F(x̄, 0) := D∗
M F(x̄, 0) = D∗

N F(x̄, 0).

Then x̄ is linearly suboptimal with respect to ( f,�,�) if and only if there is 0 �= z∗ ∈ Z∗
satisfying the inclusion

0 ∈ D∗F(x̄, 0)(z∗).

Proof Let us start with justifying assertion (i). Using 0 ∈ D∗
M F(x̄, 0)(z∗) and the definition

of the mixed coderivative (6) in the case of dim X < ∞, we find εk ↓ 0, xk → x̄ , zk → 0,
x∗

k → 0, and z∗
k → z∗ such that

zk ∈ F(xk) and x∗
k ∈ D̂∗

εk
F(xk, zk)(z

∗
k ) whenever k ∈ IN .

Note that the first inclusion above implies, by the construction of F in (17), that xk ∈ �

and zk = f (xk) ∈ �. Furthermore, since ‖z∗
k − z∗‖ → 0 as k → ∞ and ‖z∗‖ = 1, we

can assume without loss of generality that ‖z∗
k‖ = 1 for each k ∈ IN . From the relation

x∗
k ∈ D̂∗

εk
F(xk, zk)(z∗

k ) one has

〈x∗
k , x − xk〉 − 〈z∗

k , z − zk〉 ≤ εk
(‖x − xk‖ + ‖z − zk‖

)

whenever the pair (x, z) is sufficiently close to (x̄, 0). This implies the estimate

−〈z∗
k , z − zk〉 ≤ (

εk + ‖x∗
k ‖)(‖x − xk‖ + ‖z − zk‖

)
,

which means that

0 ∈ D̂∗
γk

F(xk, zk)(z
∗
k ) with γk := εk + ‖x∗

k ‖ ↓ 0 as k → ∞. (18)

It is easy to see that the point x̄ is linearly suboptimal with respect to ( f,�,�) if and
only if the system of two sets

�1 := gph F and �2 := X × {0} ⊂ X × Z

is linearly subextremal around (x̄, 0) ∈ X × Z in the sense of Definition 1. Observe that

N̂ε((x, 0);�2) = (ε IB∗)× Z∗, ε > 0,

and that the inclusion in (18) is equivalent to

(0,−z∗
k ) ∈ N̂γk ((xk, zk);�1) for all k ∈ IN .

Then the proof of the sufficiency part of [7, Theorem 4.1] ensures that, in the general Banach
space framework, {�1,�2} is linearly subextremal around (x̄, 0), and thus x̄ is linearly
suboptimal with respect to ( f,�,�).

To prove assertion (ii), we fix a point x̄ linearly suboptimal with respect to ( f,�,�) and
pick an arbitrary sequence εk ↓ 0 as k → ∞. Taking into account the above discussions and
the proof of assertions (i) of Theorem 1, find sequences (xk, zk) → (x̄, 0) with zk ∈ F(xk)

and z∗
k ∈ Z∗ with ‖z∗

k‖ = 1 satisfying 0 ∈ D̂∗F(xk, zk)(z∗
k ) for all k ∈ IN . Since Z is Aspl-

und, there is z∗ ∈ Z∗ such that z∗
k
w∗→ z∗ as k → ∞ along a subsequence, and one clearly has

0 ∈ D̃∗
M F(x̄, 0)(z∗) by passing to the limit as k → ∞. Furthermore, z∗ �= 0 by the PSNC

assumption imposed. The latter assumption obviously holds if Z is finite-dimensional. Thus
we arrive at the conclusion of (ii).
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The final assertion (iii) is a direct combination of (i) and (ii) by the assumptions made,
which are discussed in Sect. 2. Note that D̃∗

M F(x̄, 0) = D∗
N F(x̄, 0) and the PSNC property

of F−1 is equivalent to the SNC property of F in this case, since dim X is finite-dimensional.
This completes the proof of the theorem. ��

Using extended calculus rules available for the generalized differentiable constructions
and SNC/PSNC properties involved in the formulation of Theorem 2 (see [12]), we can
deduce from the condensed results in assertion (ii) of this theorem comprehensive neces-
sary conditions for linear suboptimality in multiobjective problems and their specifications
subject to various (in particular, equilibrium) constraints expressed separately via the initial
data ( f,�,�), i.e., in terms of generalized differential constructions for each of f , �, and
�; cf. the results of Subsects. 5.3.2 and 5.3.5 in [13] for the case of necessary conditions for
( f,�,�)-optimality. The situation for sufficient conditions and also for the characterization
of linear suboptimality is more delicate: we have to employ calculus rules with equalities,
which are essentially more restrictive than those we need for necessity. Let us present some
results in this direction providing the characterization of linear suboptimality in terms of the
initial data ( f,�,�) based on the condensed conditions of Theorem 2(iii).

Recall that f : X → Y is strictly Lipschitzian at x̄ if it is locally Lipschitzian around this
point and there is a neighborhood V of the origin in X such that the sequence

yk := f (xk + tkv)− f (xk)

tk
, k ∈ IN ,

contains a norm convergent subsequence whenever v ∈ V , xk → x̄ , and tk ↓ 0. It obvi-
ously reduces to the standard local Lipschitzian property of f around x̄ when Y is finite-
dimensional; see [12, Subsect. 5.1.3] for a detailed study and applications of this property in
infinite-dimensional spaces.

Theorem 3 (separated criteria for linear suboptimality in multiobjective problems) Let
f : X → Z be Lipschitz continuous around x̄ with dim X < ∞, and let � ⊂ X and
� ⊂ Z be locally closed around x̄ and z̄ := f (x̄) ∈ �, respectively. Impose one of the
following assumptions (a)–(c) on the initial data:

(a) dim Z < ∞ and either � = X, or f strictly differentiable at x̄ .
(b) Z is Asplund,� = X,� is normally regular and SNC at z̄, and f is strictly Lipschitzian

at x̄ .
(c) Z is Asplund, � is normally regular at x̄ , � is normally regular and SNC at z̄, and f is

N-regular at x̄ .

Then x̄ is linearly suboptimal with respect to ( f,�,�) if and only if there is 0 �= z∗ ∈ Z∗
satisfying the conditions

0 ∈ ∂〈z∗, f 〉(x̄)+ N (x̄;�), z∗ ∈ N (z̄;�).

Proof Given ( f,�,�) in the theorem, consider the set

E( f,�,�) := {(x, z) ∈ X × Z
∣∣ f (x)− z ∈ �, x ∈ �}

and observe that this set is the graph of the mapping F defined in (17). Hence

D∗
N F(x̄, 0)(z∗) = {

x∗ ∈ X∗∣∣ (x∗,−z∗) ∈ N
(
(x̄, 0); E( f,�,�)

)}
,
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where f�(x) := f (x)+δ(x;�) stands for the restriction of f on the set�. Then Lemma 5.23
from [13] ensures the representation

D∗
N F(x̄, 0)(z∗) =

{
∂〈z∗, f�〉(x̄) if z∗ ∈ N (z̄;�),
∅ otherwise

(19)

provided that Z is Asplund and that f� is locally Lipschitzian around x̄ and strongly coderiv-
atively normal at this point.

Let us first justify in parallel assertions (a) and (b) of the theorem, where� = X . It follows
from (19) and [12, Proposition 4.9] that F is strongly coderivatively normal at (x̄, 0) if either
dim Z < ∞, or f is strictly Lipschitzian at x̄ and � is normally regular at z̄. To meet all the
assumptions of Theorem 2 stated above, we need also checking (in the case of dim Z = ∞)
that F−1 is PSNC at (0, x̄). Theorem 5.59 from [13] ensures this property if either� is SNC
at z̄ or f −1 is PSNC at (z̄, x̄). Since X is finite-dimensional, the latter is equivalent to the
SNC property of f at (x̄, z̄) and, by [12, Corollary 3.30], it reduces to dim Z < ∞ for strictly
Lipschitzian mappings. Thus we complete the proof of the theorem in the case of � = X .

To proceed in the constraint case of � �= X in assertion (c), it remains to justify that

∂〈z∗, f�〉(x̄) = ∂〈z∗, f 〉(x̄)+ N (x̄;�) (20)

in (19) under the assumptions made in (c). If f is strictly differentiable at x̄ , (20) follows
directly from the easy subdifferential sum rule held in this case. The more involved sum rule
from [12, Proposition 3.12] ensures (20) and also the N -regularity (and hence the coderivative
normality) of the restriction f� at x̄ when f is N -regular and � is normally regular at
this point. Combining these facts with the assumptions on � in (c) needed in the case of
dim Z = ∞ similarly to the above proof for � = X , we arrive at all the requirements of
Theorem 2(iii) and thus complete the proof of the theorem. ��

Let us present two corollaries of Theorem 3 in the case of multiobjective problems with
constraint sets given in more specific forms typical in applications. First consider the case of
the so-called operator constraints defined by

� = g−1(�) with g : X → Y and � ⊂ Y. (21)

Corollary 1 (pointbased criteria for linear suboptimality under operator constraints) Let in
the framework of Theorem 3 the constraint set� be given by (21). Assume that dim X < ∞,
that � and � are locally closed around z̄ and ȳ := g(x̄), respectively, and that f and g are
strictly differentiable at x̄ . Suppose also that one of the following assumptions holds:

(a) Y is Banach, dim Z < ∞, and ∇g(x̄) is surjective.
(b) dim Y < ∞, Z is Asplund, � is normally regular at ȳ, � is normally regular and SNC

at z̄, and

N (ȳ;�) ∩ ker ∇g(x̄)∗ = {0}.
Then x̄ is linearly suboptimal with respect to ( f, g−1(�),�) if and only if there is 0 �= z∗ ∈
Z∗ satisfying the relations

0 ∈ ∇ f (x̄)∗z∗ + ∇g(x̄)∗N (ȳ;�), z∗ ∈ N (z̄;�).
Proof We use Theorem 3 with � := g−1(�). First apply [12, Theorem 1.17] to ensure the
calculus formula

N (x̄;�) = ∇g(x̄)∗N (ȳ;�)
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under the surjectivity assumption on ∇g(x̄) made in (a) when Y is Banach. Then we arrive
at the conclusion of this corollary due to Theorem 3(a).

To ensure the normal regularity of � = g−1(�), needed in Theorem 3(c) in addition to
the above calculus formula, we employ [12, Theorem 3.13(iii)] with F(y) = δ(y;�) therein,
which justifies the conclusion of the corollary under the assumptions made in (b). Note that
we cannot get anything but strict differentiability from the N -regularity condition on g in the
latter theorem, since the graphical regularity of g is equivalent to its strict differentiability at
the reference point due to [12, Corollary 3.69] with dim X < ∞. ��

The result obtained has a striking consequence for the case of multiobjective problems
with functional constraints in the classical form of equalities and inequalities given by strictly
differentiable functions. In this case an appropriate multiobjective version of the Lagrange
multiplier rule in normal form provides necessary and sufficient conditions for linear subop-
timality under the Mangasarian-Fromovitz constraint qualification.

Corollary 2 (linear suboptimality in multiobjective problems with functional constraints)
Let f : X → Z be strictly differentiable at x̄ with dim X < ∞ and Z being Asplund, let �
be normally regular and SNC at z̄, and let

� := {
x ∈ X

∣∣ ϕi (x) ≤ 0, i = 1, . . . ,m; ϕi (x) = 0, i = m + 1, . . . ,m + r
}
,

where each ϕi is strictly differentiable at x̄ . Assume the Mangasarian-Fromovitz constraint
qualification:

(a) ∇ϕm+1(x̄), . . . ,∇ϕm+r (x̄) are linearly independent, and
(b) there is u ∈ X satisfying

〈∇ϕi (x̄), u〉 < 0, i ∈ {1, . . . ,m
} ∩ I (x̄),

〈∇ϕi (x̄), u〉 = 0, i = m + 1, . . . ,m + r,

where I (x̄) := {
i = 1, . . . ,m + r

∣∣ ϕi (x̄) = 0
}
.

Then x̄ is linearly suboptimal with respect to ( f,�,�) if and only if there is z∗ ∈ N (z̄;�)\{0}
and (λ1, . . . , λm+r ) ∈ IRm+r such that

∇ f (x̄)∗z∗ +
m+r∑
i=1

λi∇ϕi (x̄) = 0,

λi ≥ 0 and λiϕi (x̄) = 0 for all i = 1, . . . ,m.

Proof Follows from Corollary 1(b) with

� :=
{
(α1, . . . , αm+r ) ∈ IRm+r

∣∣∣ αi ≤ 0 for i = 1, . . . ,m and

αi = 0 for i = m + 1, . . . ,m + r
}

and g := (ϕ1, . . . , ϕm+r ) : X → IRm+r . ��
Finally in this section, we consider a rather new class of optimization-related problems

known as equilibrium problems with equilibrium constraints (EPECs). In [13,14] and the
references therein, the reader can find more information about such problems, their modifica-
tions, and interpretations from the viewpoint of multiobjective optimization. Our main goal
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is to derive necessary and sufficient conditions for linear suboptimality in EPECs described
as follows:

Given f : X × Y → Z , S : X →→ Y , and� ⊂ Z , we say that (x̄, ȳ) is linearly suboptimal
with respect to ( f, S,�) if it is linearly suboptimal with respect to ( f, gph S,�) in the sense
of Definition 2. We are mostly interested in equilibrium constraints given by solution maps
to parametric variational systems of the type

S(x) := {
y ∈ Y

∣∣ 0 ∈ q(x, y)+ Q(x, y)
}
. (22)

where q : X × Y → P is single-valued while Q : X × Y →→ P is a set-valued mapping
between Banach spaces. For Q = Q(y), model (22) corresponds to the so-called gener-
alized equations in the sense of Robinson [16], which reduce to the classical variational
inequalities when Q(y) = N (y;�) is the normal cone mapping generated by a convex
set �.

First observe, based on Theorem 2(ii) and calculus rules of the inclusion type, that all the
necessary conditions obtained in [13, Subsect. 5.3.5] for generalized order optimality hold
true for linearly suboptimal solutions to the EPECs under consideration. To derive criteria
for linear suboptimality, we need to employ more restrictive calculus rules of the equality
type that provide exact formulas for computing coderivatives of solution maps given by
equilibrium constraints and also ensure graphical regularity of these maps in appropriate
settings. To proceed, we rely on the results of Theorem 3(c) with � = gph S ⊂ X × Y
and on the corresponding coderivative formulas and regularity assertions established in [12,
Subsect. 4.4.1] for parametric variational systems. In the next theorem we impose for the strict
differentiability assumption on f , which is actually not far from its N -regularity imposed in
Theorem 4.3(c); these properties always agree when Z is finite-dimensional.

Theorem 4 (characterization of linear suboptimality in general EPECs)Let f : IRn×IRm →
Z and q : IRn × IRm → P be strictly differentiable at (x̄, ȳ) with z̄ := f (x̄, ȳ) ∈ � and
p̄ := −q(x̄, ȳ); let � ⊂ Z and the graph of Q : IRn × IRm →→ P be locally closed around
z̄ and (x̄, ȳ, p̄) ∈ gph Q, respectively; and let S : IRn →→ IRm be given in (22). Assume in
addition that one of the following requirements holds:

(a) dim Z < ∞, P is Banach, ∇x q(x̄, ȳ) is surjective, and Q = Q(y);
(b) Z and P are Asplund, � is SNC and normally regular at z̄, Q = Q(x, y) is SNC and

N-regular at (x̄, ȳ, p̄), and the adjoint generalized equation

0 ∈ ∇q(x̄, ȳ)∗ p∗ + D∗
N Q(x̄, ȳ, p̄)(p∗) (23)

has only the trivial solution p∗ = 0.

Then (x̄, ȳ) is linearly suboptimal with respect to ( f, S,�) if and only if there are linear
functionals z∗ ∈ N (z̄;�) \ {0} and p∗ ∈ P∗ satisfying

0 ∈ ∇ f (x̄, ȳ)∗z∗ + ∇q(x̄, ȳ)∗ p∗ + D∗
N Q(x̄, ȳ, p̄)(p∗).

Proof Employing Theorem 3 with � = gph S ⊂ X × Y , we conclude that (x̄, ȳ) is linearly
suboptimal with respect to ( f, S,�) if and only if there is z∗ ∈ N (z̄;�) \ {0} satisfying

0 ∈ ∇ f (x̄, ȳ)∗z∗ + N
(
(x̄, ȳ); gph S

)

provided that both X and Y are finite-dimensional, that f is strictly differentiable at (x̄, ȳ),
and that either dim Z < ∞ or Z is Asplund, � is SNC and normally regular at z̄, and S is
N -regular at (x̄, ȳ).
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To obtain results in terms of the initial data for the solution map S, we need to represent
N

(
(x̄, ȳ); gph S

)
via (q, Q) and also to invoke additional conditions ensuring the N -regu-

larity of S at (x̄, ȳ) when dim Z = ∞. First consider the case of dim Z < ∞, when we do
not need to ensure the regularity of S. In this case one has by [12, Theorem 4.44(i)] that

N
(
(x̄, ȳ); gph S) =

{
(x∗, y∗) ∈ X∗ × Y ∗

∣∣∣ x∗ = ∇x q(x̄, ȳ)∗ p∗,

y∗ ∈ ∇yq(x̄, ȳ)∗ p∗ + D∗
N Q(ȳ, p̄)(p∗) for some p∗ ∈ P∗

}

when P is Banach, Q = Q(y), and ∇x q(x̄, ȳ) is surjective. This gives the conclusion of the
theorem in case (a).

If Q = Q(x, y) and Z is Asplund, we employ [12, Theorem 4.44(ii)], which gives the
representation formula for N

(
(x̄, ȳ); gph S

)
and simultaneously ensures the N -regularity of

solution map S at (x̄, ȳ) under the N -regularity assumption on mapping Q at (x̄, ȳ, p̄) but
with no surjectivity of the partial derivative ∇x q(x̄, ȳ). Combining this with the assumptions
in Theorem 3(c), we complete the proof of the theorem. ��

The most restrictive assumption in Theorem 4(b) is the N -regularity of Q at the reference
point. It particularly holds when Q is convex-graph, in which case the conditions of Theorem 4
can be expressed explicitly in terms of Q instead of its coderivative; cf. [12, Corollary 4.45].
Other specifications of Theorem 4 can be derived for EPECs whose equilibrium constraints
of (22) are described in the composite subdifferential forms

Q(x, y) = ∂(ψ ◦ g)(x, y) or Q(x, y) = (∂ψ ◦ g)(x, y) (24)

typical in applications, where g : IRn × IRm → W and ψ : W → IR in the framework of
Theorem 4 with a Banach space W . The results obtained in both settings of (24) are based
on the second-order subdifferential calculus developed in [12]; cf. also the next section for
some counterparts in the case of mathematical programs with equilibrium constraints.

5 Linear subminimality with applications to MPECs

In the concluding section of this paper, we study the notion of linear suboptimality from
Definition 2 in the particular case of usual minimization problems; thus we refer to this notion
as to linear subminimality. Minimization problems form a special subclass of the multiob-
jective optimization problems of Sect. 4 with a single (real-valued) objective f and with
� = IR−. On the other hand, such problems and their linearly suboptimal solutions have cer-
tain specific features in comparison with general problems of multiobjective optimization.
In what follows, we derive characterizing results for linear subminimality in pointbased
form for unconstrained and constrained minimization problems. A special attention is paid
to applications of general subminimality results to the case of minimization problems with
equilibrium constraints, i.e., for MPECs.

Definition 3 (linear subminimality) Let � ⊂ X , and let ϕ : X → IR be finite at x̄ ∈ �. We
say that x̄ is linearly subminimal with respect to (ϕ,�) if

lim sup
x
�→x̄

ϕ(x)→ϕ(x̄)
r↓0

inf
u∈Br (x)∩�

ϕ(u)− ϕ(x)

r
= 0.

The point x̄ is said to be linearly subminimal for ϕ if � = X in the above.
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This notion of linear subminimality corresponds to “almost minimality” in [7] and to
“weak inf-stationarity” in [8], where a “fuzzy” subdifferential characterization of this prop-
erty was derived in terms of Fréchet subgradients of the “condensed” function

ϕ�(x) := ϕ(x)+ δ(x;�). (25)

Our main goal is to obtain pointbased characterizations of linear subminimality in various
problems of constrained minimization expressed via the initial data. This will be done by
using extended calculus rules available for our basic/limiting normal and (first-order and
second-order) subdifferential constructions.

The next theorem contains pointbased necessary and sufficient conditions for linear sub-
minimality in general (non-structured) minimization problems with geometric constraints in
finite-dimensional spaces.

Theorem 5 (pointbased criteria for linear subminimality) Let dim X < ∞, let ϕ : X → IR
be finite at x̄ and l.s.c. around this point, and let � ⊂ X be locally closed around x̄. The
following assertions hold:

(i) The point x̄ is linearly subminimal with respect to (ϕ,�) if and only if 0 ∈ ∂ϕ�(x̄),
where ϕ� is defined in (25).

(ii) Impose the alternative assumptions:
(a) either ϕ is strictly differentiable at x̄ ,
(b) or ϕ is lower regular at x̄ , � is normally regular at x̄ , and

∂∞ϕ(x̄) ∩ ( − N (x̄;�)) = {0}; (26)

the latter qualification condition is automatics when ϕ is locally Lipschitzian around x̄.

Then x̄ is linearly subminimal with respect to (ϕ,�) if and only if

0 ∈ ∂ϕ(x̄)+ N (x̄;�). (27)

Proof The condensed pointbased characterization in (i) follows from assertion (iii) of The-
orem 4.2 with � = IR−, f (x) = ϕ(x) − ϕ(x̄), and F defined in (17). Note that this F
is automatically SNC and strongly coderivatively normal at (x̄, 0) due to Z = IR, and one
obviously has the relationship

0 ∈ D∗F(x̄, 0)(1) ⇐⇒ 0 ∈ ∂ϕ�(x̄),
which reduces (i) to Theorem 4.2(iii).

To prove assertion (ii) of the theorem, we need to apply an equality sum rule for basic sub-
gradients to the sum of functions in (25). When ϕ is strictly differentiable at x̄ , the required
sum rule follows from [12, Proposition 1.107] with no regularity assumption on �. When
(b) is assumed with the imposed regularity of ϕ and �, the sum rule

∂ϕ�(x̄) = ∂ϕ(x̄)+ N (x̄;�)
follows from [12, Theorem 3.36] under the qualification condition (26), which is automatic
for locally Lipschitzian functions due to ∂∞ϕ(x̄) = {0} in this case; see [12, Corollary 1.81].
This justifies (27) and completes the proof of the theorem. ��

Observe that in case (b) of Theorem 5.2(ii), the assumptions ensuring criterion (27) are
essentially weaker than those induced by Theorem 4.3(c). Indeed, the N -regularity assump-
tion on f (x) = ϕ(x)−ϕ(x̄)with Z = IR in Theorem 3(c), which is the graphical regularity of
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ϕ at x̄ , is equivalent to the strict differentiability ofϕ at this point due to [12, Proposition 1.94].
On the other hand, the lower regularity of ϕ assumed in Theorem 5(b) holds for important
classes of non-smooth functions encountered in minimization problems. In particular, this
includes convex functions and a broader class of amenable functions widely discussed and
applied in [17]. Such a difference between the results of Theorem 3 in the case of mini-
mization problems and the ones of Theorem 5 is due to the one-sided specific character of
minimizing extended-real-valued functions, which is missed by separated conditions in the
vector/multiobjective framework.

Similarly to Sect. 4, we can derive from Theorem 5.2(ii) some consequences related to
specific types of constraints. Note that the results obtained in this way are generally different
from those established for constrained problems of multiobjective optimization; cf. Corollar-
ies 4.4, 4.5 and Theorem 4.6, which unavoidably impose the strict differentiability assumption
on the cost function.

Let us consider in more detail a broad class of mathematical programs with equilibrium
constraints (MPECs) and its typical specifications important in various applications; see the
books [10,15] for comprehensive discussions.

General MPECs can be described in the following way:

minimize ϕ(x, y) subject to y ∈ S(y), (x, y) ∈ �, (28)

where ϕ : X × Y → IR, � ⊂ X × Y , and S : X →→ Y is a set-valued mapping between
Banach spaces, which is usually given in form (22) of solution maps to generalized equa-
tons/variational conditions. Similarly to Definition 5, one can formulate the notion of linear
subminimality for such MPECs. Furthermore, based on the procedure employed above and
generalized differential/SNC calculi, we observe that all the necessary conditions for conven-
tional optimality for MPECs developed in [13, Sect. 5.2] hold true as necessary conditions
for linear suboptimality in such problems.

In what follows, we focus on deriving pointbased necessary and sufficient conditions for
linear suboptimality in MPECs (28) with the equilibrium constraints given by (22) putting
� = X × Y for simplicity. In this case we say that (x̄, ȳ) is MPEC linearly subminimal in
(28), (22) with respect to (ϕ, S) if it is linearly subminimal with respect to (ϕ, gph S) in the
sense of Definition 5 considered in the product space X × Y .

The next theorem is an MPEC counterpart of Theorem 4.6, where however we significantly
relax the strict differentiability assumption on the cost function in case (b). Observe from
the proof given below that the imposed Lipschitzian assumption on ϕ can be also relaxed by
using an appropriate MPEC version of the qualification condition (26).

Theorem 6 (characterization of linear subminimality for general MPECs) Let ϕ : IRn ×
IRm → IR be locally Lipschitzian around (x̄, ȳ), let g : IRn × IRm → P be strictly differ-
entiable at this point, and let the graph of Q : IRn × IRm →→ P be locally closed around
(x̄, ȳ, p̄) with p̄ := −q(x̄, ȳ). Assume in addition that:

(a) either ϕ is strictly differentiable at (x̄, ȳ), P is Banach, Q = Q(y), and the partial
derivative ∇x q(x̄, ȳ) is surjective;

(b) or ϕ is lower regular at (x̄, ȳ), P is Asplund, Q = Q(x, y) is SNC and N-regular at
(x̄, ȳ, p̄), and the adjoint generalized equation (23) has only the trivial solution p∗ = 0.

Then (x̄, ȳ) is linearly subminimal with respect to (ϕ, S) in the MPEC formulated in (28),
(22) if and only if there is p∗ ∈ P∗ satisfying

0 ∈ ∂ϕ(x̄, ȳ)+ ∇q(x̄, ȳ)∗ p∗ + D∗
N Q(x̄, ȳ, p̄)(p∗). (29)
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Proof By definition, the linear subminimality of (x̄, ȳ) with respect to (ϕ, S) in the MPEC
formulated in (28), (22) means that (x̄, ȳ) is linearly subminimal with respect to (ϕ, gph S)
in the sense studied in Theorem 5.2. Thus employing assertion (ii) of the latter theorem in
case (a), we have that the condition

0 ∈ ∇ϕ(x̄, ȳ)+ N
(
(x̄, ȳ); gph S

)
(30)

is necessary and sufficient for the linear subminimality of (x̄, ȳ) with respect to (ϕ, S) pro-
vided that ϕ is strictly differentiable at (x̄, ȳ) with no regularity requirement on gph S. If ϕ
is assumed to be lower regular at (x̄, ȳ), then we employ Theorem 5.2(ii) in case (b) and
conclude that the condition

0 ∈ ∂ϕ(x̄, ȳ)+ N
(
(x̄, ȳ); gph S

)
, (31)

is necessary and sufficient the linear subminimality of (x̄, ȳ) with respect to (ϕ, S) provided
that the graph of S is normally regular at (x̄, ȳ); observe that the qualification condition (26)
holds automatically by the Lipschitz continuity of ϕ around (x̄, ȳ).

The rest of the proof of this theorem follows the one given for Theorem 4.6, where the
normal cone N

(
(x̄, ȳ); gph S) is computed and the N -regularity of S is justified by employ-

ing the results of [12, Theorem 4.44] under the assumptions on (P, q, Q) made in (a) and
(b), respectively. In this way we derive criterion (31) from those in (29) and (30) and thus
complete the proof of the theorem. ��

Finally, let us present specifications of the results of Theorem 5.3 in both cases (24) of
MPECs with composite subdifferential structures, which are the most important for appli-
cations. In these case, we need to compute the normal coderivative D∗

N Q(x̄, ȳ, p̄) in (29)
via the given data ψ and g of (24). To proceed, we will use the concept of the second-order
subdifferential for extended-real-valued functions together with appropriate results (chain
rules) of the second-order subdifferential calculus.

Given an extended-real-valued function ϕ : X → IR finite at x̄ and a basic first-order
subgradient ȳ ∈ ∂ϕ(x̄) from (10), recall [11,12] that the second-order subdifferential of ϕ
at x̄ relative to ȳ is the mapping ∂2ϕ(x̄, ȳ) : X∗∗ →→ X∗ with the values

∂2ϕ(x̄, ȳ)(u) := (D∗
N ∂ϕ)(x̄, ȳ)(u), u ∈ X∗∗, (32)

i.e., it is defined as the (normal) coderivative of the first-order subdifferential mapping (an
extension of the classical derivative-of-derivative approach in the second-order differentia-
tion). If ϕ ∈ C2 near x̄ , we have

∂2ϕ(x̄)(u) = {∇2ϕ(x̄)∗u
}

for all u ∈ X∗∗.

In the books [12,13], the reader can find a developed theory and various applications of the
second-order subdifferential construction (32) as well as of its “mixed” counterpart (defined
via the mixed coderivative) not used in this paper.

First we consider a specification of Theorem 5.3 in the case of Q = ∂(ψ ◦ g), i.e., when
the field of the generalized equation under consideration is given in the subdifferential form
with the so-called composite potential. As discussed in [10,12,15], such a model covers
classical variational inequalities and their extensions. To obtain characterizations of linear
subminimality for MPECs of this type, we involve second-order subdifferential chain rules
giving a representation of D∗Q = ∂2(ψ ◦ g) via the initial data (ψ, g). Again, we may apply
only those calculus results that ensure chain rules as equalities. Since N -regularity does not
seem to be a realistic property for subdifferential mappings with nonsmooth potentials, we
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restrict ourselves to case (a) of Theorem 5.3 combined with the coderivative calculation in
[12, Theorem 4.49] for solution maps to parametric variational systems.

Corollary 3 (characterizing linear suboptimality for MPECs with composite potentials) Let
Q(y) = ∂(ψ ◦ g)(y) under the assumptions imposed in case (a) of Theorem 5.3, where

S(x) := {
y ∈ IRm

∣∣ 0 ∈ q(x, y)+ ∂(ψ ◦ g)(y)
}
, (33)

where q : IRn × IRm → IRm, g : IRm → W , ψ : W → IR, and where W is Banach. Suppose
in addition that g ∈ C1 with the surjective derivative ∇g(ȳ), that ∇g(·) is strictly differen-
tiable at ȳ, and that the graph of ∂ψ is locally closed around (w̄, v̄), where w̄ := g(ȳ) and
where v̄ ∈ W ∗ is a unique functional satisfying

−q(x̄, ȳ) = ∇g(ȳ)∗v̄;
note that the closed-graph property of ∂ψ is automatic ifψ is either continuous or amenable
around the reference point.

Then (x̄, ȳ) is linearly suboptimal with respect to (ϕ, S) in the MPEC formulated in (5.4),
(5.9) if and only if the vector u ∈ IRm uniquely defined by the equation

−∇xϕ(x̄, ȳ) = ∇x q(x̄, ȳ)∗u

satisfies the relationship

0 ∈ ∇yϕ(x̄, ȳ)+ ∇yq(x̄, ȳ)∗u + ∇g(ȳ)∗∂2ψ(w̄, v̄)
(∇g(ȳ)u

)
.

Proof Follows from Theorem 5.3(a) due to the calculation given in [12, Theorem 4.49] of
the coderivative D∗S(x̄, ȳ) for the mapping S defined in (33). This calculation is based on
the second-order subdifferential chain rule from [12, Theorem 1.127]. ��

The last corollary of Theorem 5.3(a) gives a specification of its result in the case of the
second composite subdifferential structure in (24), which covers, e.g., the so-called implicit
complementarity problems; see [10,12,15].

Corollary 4 (linear suboptimality for MPECs with composite subdifferential fields) Let
Q(y) = (∂ψ ◦ g)(y) under the assumptions in case (a) of Theorem 5.3, where P = W ∗ for
some Banach space W , where

S(x) := {
y ∈ IRm

∣∣ 0 ∈ q(x, y)+ (∂ψ ◦ g)(y)
}

(34)

with g : IRm → W and ψ : W → IR, and where g is strictly differentiable at ȳ with the sur-
jective derivative ∇g(ȳ). Denoting w̄ := g(ȳ) and p̄ := −q(x̄, ȳ), we assume that the graph
of ∂ψ is locally closed around (w̄, p̄), which is automatic when ψ is either continuous or
amenable. Then (x̄, ȳ) is linearly suboptimal with respect to (ϕ, S) in the MPEC formulated
in (5.4), (5.10) if and only if the linear functional u ∈ W ∗∗ uniquely defined by the equation

−∇xϕ(x̄, ȳ) = ∇x q(x̄, ȳ)∗u

satisfies the relationship

0 ∈ ∇yϕ(x̄, ȳ)+ ∇yq(x̄, ȳ)∗u + ∇g(ȳ)∗∂2ψ(w̄, p̄)(u).

Proof Follows from Theorem 5.3(a) due to the calculation given in [12, Proposition 4.53] of
the coderivative D∗S(x̄, ȳ) for the mapping S defined in (34). This calculation is based on
the second-order subdifferential chain rule from [12, Theorem 1.66]. ��
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